Human Factors of Lessons Learned Programs

Colin G. Drury
University at Buffalo, Department of Industrial Engineering

Why Human Factors?

- LL programs used by and for humans
- □ Therefore understanding human behavior / importance will help design better systems
- Many HF aspects important: interface design, socio-technical systems design, usability.
- □ This paper concentrates on cognitive aspects of using LL systems
- Example from aviation maintenance incident analysis

Where do LL's Come From?

- **☐ Positive Events:**
 - □ Successes, solutions, designed experiments, literature, ...
 - □ Try to replicate them
- Negative Events:
 - □ Accidents, incidents, field failures, user feedback
 - ■Try to avoid them
- □ Data comes from Sender to Receiver

But....

- Not all potential Senders send LL items
- Not all potential Recipients receive and act on the LL
- ...for a variety of reasons

Curse of Dimensionality

- Events are complex, many factors affect each event and its success / failure. E.g operator did not follow procedures, poor equipment design, poor training
- Do all factors have to match the recipient's situation for a LL to be a match?

□ The question is rather: How closely do factors need to match to find an appropriate LL?

Curse of Specificity

- □ IF recipient is
 - (a) overworked on other things
 - (b) overwhelmed with LL's
- □ THEN a perceived "poor match" is a quick way to dismiss the extra work of thinking through the applicability to recipient's need
- ☐ Can HF do anything about this?
- Yes, see John Voit's work on models of LL systems and how they operate

Is Abstraction a Key?

- □ Although the chance of a LL matching the needs of the recipient for all factors is remote, matches can still be found at a more aggregated level of abstraction
- □ Actual values of factors would be a zero level of abstraction
- People are known to be very good at moving between levels of abstraction, even though this is cognitively demanding.
- "Abstraction Hierarchy" well known in HF

But...

- Recipient must be able to move to the higher level of abstraction
- □ Sender must be aware that recipient may only find match at higher level of abstraction
- System designers/champions must design the system to facilitate such transition

Example: Incident Investigation

- ☐ In aviation Maintenance, we may have "dealt with" each incident, but what next?
- Accumulate much data over time period
- Mine the data for free advice!
- We currently do some of this:
 - Counts and costs by managerial unit
 - **□** Counts and costs by outcome type
- Usually Pareto charts / counts
- Only a one-dimensional look at the data

Does 1-D Look Help Control?

- Accumulated data for August 2004:
 - □ Hangar 2: 7 incidents, cost = \$174,000
 - □ Hangar 5: 2 incidents, cost = \$120,000

- **☐ SO WHAT????**
- What do we say to managers?
 - ☐ Hangar 2: "Must try harder"
 - □ Hangar 5: "Don't get complacent"
- But HOW can managers respond?

Outcome Pareto Data

Error Classification	Total
Improper installation	58
Improper servicing	5
Improper/incomplete repair	6
Improper fault isolation/	25
inspection/testing	
FOD	13
Equipment damage	13
Injury	54
Other	30
Total	205

Again, SO WHAT?

Deriving Effective Control

- ☐ To control, we need to know how our actions affect the outcome
- These must be specific actions:
 - Improve maintenance of work stands
 - Make documentation easier to read
 - Don't do steps not on procedure, even if that is the norm here
- □ ...rather than: "Try harder"
- Need to relate specific causes and effects
- Need to USE our accumulated data

Data Analysis Example

- 206 valid incidents in data base
- New analysis here was to examine data statistically for event patterns:
 - **□ Error type:** how error manifests itself finally
 - **□** Contributing Factor: Causal factor
- Used Cross-Tabulation of error types and causal factors
- Use patterns to find effective strategies

Finding Patterns

- □ Are particular Contributing Factors related to particular Error Types?
- Used Chi-square analysis of tables relating
 Contributing Factors to Error Types
- If significant, find which cells have more events than expected by chance
- Started at top level of abstraction where there is plenty of data available
- Example for "Information" Contributing Factor:

Error Classification	Information Not a Factor	Information A Factor	Total
Improper installation	21	36	58
Improper servicing	4	2	5
Improper/incomplete repair	2	5	6
Improper fault isolation/	12	13	25
inspection/testing			
FOD	5	8	13
Equipment damage	5	6	13
Injury	49	5	54
Other	13	16	30
Total	112	94	205

Results: -Improper Installation over represented -Injury under represented

Error Patterns Overall

- ☐ For each error type we can find those contributing factors significantly over- and under-represented
- ☐ These give most and least effective potential interventions
- ☐ If relationship not significant, then a contributing factor is equally effective (or ineffective) across error types
- ☐ This leads directly to management action
- **☐ Summary Table:**

Error Classification	Causal Factors					
	Over-Represented (most effective interventions)	Under-Represented (least effective intervention)				
Improper installation	Information Supervision					
Improper servicing	4. Job/task 8. Organizational issues					
Improper/incomplete repair	8. Organizational issues					
Improper fault isolation/ inspection/testing	5. Individual performance6. Environment/ facilities8. Organizational issues9. Supervision					
FOD	6. Environment/ facilities	4. Job/task				
Equipment damage		4. Job/task 8. Organizational issues				
Injury		Information Environment/ facilities				
Other		5. Individual performance 6. Environment/ facilities 8. Organizational issues 9. Supervision				

How Does This Help?

- Causal Factors imply specific interventions:
 - ■Knowledge / Skills implies Training
 - □ Equipment implies buying and maintaining usable tools and machines
 - **□Organizational issues means CRM etc**
- □ For any Error Type we can have:
 - Significantly over-represented causal factor therefore worth changing
 - Significantly under-represented causal factor, therefore not worth changing

Not just significant factors!

- We have found causal factors significantly over-represented and significantly underrepresented for each Error Type
- But some causal factors "not significant"
 - **□ Equipment / tools / parts**
 - □ Airplane design / configuration
 - ☐ Knowledge / skills / qualifications
 - **□** Communications
- These imply interventions equally effective across all error types

Issues to watch

- **□** Data quality:
 - Investigators have "favorite" causes
 - **■When to stop data gathering?**
- ☐ If you use a data base, the lack of reporting narrative loses "rich" data. Test is: can you reconstruct the incident from data base entry?
- □ Data & depth of analysis: the deeper you can go the more specific your interventions

LL's: Re-use of Incident Data

- Investigation data: dealing with each specific incident AND using accumulated data to find patterns
- □ Patterns from cross-tabulation: Error type vs Contributing factor
- Over-represented factors lead to specific interventions with high chance of success
- Some interventions may be equally effective across all error types
- Can re-use existing incident data to predict effectiveness

Let's do it

How to Abstract

- □ Read all incidents and
- (1) Classify incidents into categories, e.g. based on outcomes or task elements. Calling these "Hazard Patterns" here
- (2) Classify causal factors using any convenient scheme, e.g. Task, Operator, Machine, Environment, Social (TOMES) or SHELL in aviation

An Example of Abstraction

- □ Comes from an analysis of 206 aviation maintenance incidents
- □ Data were collected over time but largely unused
- Each individual incident had been "dealt with" and "solved"

Hazard patterns: overview

- 1. Aircraft Parked at Hanger or Gate
 - 1.1. Equipment Strikes Aircraft
 - 1.2 A/C or part contacts object
- 2. Aircraft under tow
 - 2.1. Towing vehicle strikes aircraft
 - 2.2. A/C not configured for towing
 - 2.3. A/C strikes fixed object

Hazard Pattern	Number of Incidents			% of Total
1. Aircraft is Parked at the Hangar/Gate/Tarmac	81			62.3
1.1 Equipment Strikes Aircraft		51		
1.1.1 Tools/Materials Contact Aircraft			4	
1.1.2 Workstand Contacts Aircraft			23	
1.1.3 Ground Equipment is Driven into Aircraft			13	
1.1.4 Unmanned Equipment Rolls into Aircraft			6	
1.1.5 Hangar Doors Closed Onto Aircraft			5	
1.2 Aircraft (or Aircraft Part) Moves to Contact Object		30		
1.2.1 Position of Aircraft Components Changes			15	
1.2.2 Center of Gravity Shifts			9	
1.2.3 Aircraft Rolls Forward/Backward			6	
2. Aircraft is Being Towed	49			37.7
2.1 Towing Vehicle Strikes Aircraft		5		
2.2 Aircraft is Not Properly Configured for Towing		2		
2.3 Aircraft Contacts Fixed Object/Equipment		42		
2.3.1 Aircraft Contacts Fixed Object/Equipment			13	
2.3.2 Aircraft Contacts Moveable	29			
Object/Equipment				
Totals	130	130	130	100%

Drury SELLS 04

Latent Failures: overview

- A. Poor communication
- **B.** Poor equipment
- C. Incorrect number of personnel
- D. Inadequate space
- E. Problems with painted guidelines
- F. Personnel unaware of concurrent work
- G. Pressure for on-time departures
- H. Lack of awareness of risk / hazard
- I. Pushback policies not enforced

	Latent	Description of	Number of	
	Failure ID	Latent Failure	Incidents	
	Α	Poor Communication	29	
	A1	Poor Communication: Between Crew	24	
	A2	Poor Communication: Between Shifts	5	
	В	Poor Equipment	72	
	B1	Poor Equipment: Inappropriate for Task	39	
	B2	Poor Equipment: Mechanical Problem	33	
	С	Correct Number of Personnel Not Used	36	
	D	Inadequate Space	30	
	D1	Inadequate Space: Congested Area	22	
	D2	Inadequate Space: Ill-suited for Task	8	
	E	Problems With Painted Guide Lines	21	
	E1	Guide Lines: Do Not Exist	7	
	E2	Guide Lines: Do Not Extend Out of	4	
		Hangar		
	E3	Guide Lines: Not Suitable for Aircraft	10	
	F	Personnel Unaware of Concurrent Work	8	
	G	Pressures to Maintain On-Time	19	
		Departures		
	Н	Lack of Awareness of Risks/Hazards	34	
		Pushback Policies Not Enforced	16	
Drury SEI	LS 04	TOTAL	265	

Cross-Tabulate HP's and CF's

- ☐ Get ENORMOUS table!
- Use Chi-Square test to find if HP's and CF's related
- Use Standardized Residuals for finding over-represented cells: focus interventions
- Many cells empty, therefore statistics suspect, but can always combine categories: abstraction again
- □ (Note: don't combine first, as far more difficult to un-combine later!)

Hazard Patterns x Latent Failures

																_			
	A	A1	A2	В	B 1	B2	C	D	D 1	D2	\mathbf{E}	E1	E2	E3	F	G	H	I	Total
1	17	13	4	53	33	20	22	12	8	4	8	2	1	5	8	11	22	4	157
1.1	5	2	3	47	30	17	17	11	8	3	7	1	1	5	1	6	10	2	106
1.1.1	3	1	2	3	1	2	0	1	0	1	0	0	0	0	0	0	2	0	9
1.1.2	1	1	0	29	25	4	6	0	0	0	1	0	0	1	1	4	2	1	45
1.1.3	0	0	0	7	4	3	9	7	7	0	1	0	0	1	0	2	0	1	27
1.1.4	0	0	0	8	0	8	2	0	0	0	0	0	0	0	0	0	4	0	14
1.1.5	1	0	1	0	0	0	0	3	1	2	5	1	1	3	0	0	2	0	11
1.2	12	11	1	6	3	3	5	1	0	1	1	1	0	0	7	5	12	2	51
1.2.1	8	7	1	1	1	0	5	0	0	0	0	0	0	0	2	3	5	0	24
1.2.2	2	2	0	3	2	1	0	0	0	0	1	1	0	0	5	1	5	1	18
1.2.3	2	2	0	2	0	2	0	1	0	1	0	0	0	0	0	1	2	1	9
2	12	11	1	19	6	13	14	18	14	4	13	5	3	5	0	8	12	12	108
2.1	0	0	0	8	3	5	2	0	0	0	0	0	0	0	0	0	3	0	13
2.2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	4
2.3	10	9	1	11	3	8	12	18	14	4	13	5	3	5	0	7	9	11	91
2.3.1	2	1	1	4	1	3	2	8	4	4	5	1	1	3	0	1	3	4	29
2.3.2	8	8	0	7	2	5	10	10	10	0	8	4	2	2	0	6	6	7	62
Total	29	24	5	72	39	33	36	30	22	8	21	7	4	10	8	19	34	16	265

Top - level relationship: 1 vs 2

	A/C	A/C
	park	tow
Poor communication	17	12
Poor equipment	53	19
Incorrect No. of presonnel	22	14
Inadequate space	12	18
Problems with guidelines	8	13
Unaware of concurrent wk	8	0
On-time pressures	11	8
Lack of hazard awareness	22	12
Push back policies	4	12

Next-level relationship: 1.1 vs 1.2

	Eq.	A/C
	strikes	strikes
Poor communication	5	12
Poor equipment	47	6
Incorrect No. of presonnel	17	5
Inadequate space	11	1
Problems with guidelines	7	1
Unaware of concurrent wk	1	7
On-time pressures	6	5
Lack of hazard awareness	10	12
Push back policies	2	2

Conclusions: What is Effective

- Aircraft under Tow
 - **More space**
 - Better guidelines on ground
 - **□** Follow pushback policies
- Aircraft Parked:
 - **Better awareness of concurrent work**
 - **□** Equipment strikes aircraft:
 - **■Better equipment**
 - **□ Aircraft parts strike equipment**
 - Better communication / hazard awareness